Faithful interpretations of LJT and LJQ
into polarized logic

José Espirito Santo ' Ralph Matthes 2 Luis Pinto!

LCentro de Matematica, Univ. Minho, Portugal

2IRIT, Univ. Toulouse, CNRS, Toulouse INP, UT3, France

TYPES 2024
IT University of Copenhagen, Denmark

10-14 June 2024

Summary

® LJT and LJQ are well-known intuitionistic focused sequent calculi,
connected with call-by-name and call-by-value computation.

® We revisit polarized logic as a unifying framework for the
simultaneous study of proof search in LJT and LJQ,
developing faithful embeddings for provability and proofs.

® Then, we can employ the tools of coinductive proof search for
polarized logic to address inhabitation questions in LJT and LJQ.

® The novelty in the talk comes from the development of the idea for
LJQ (the treatment for LJT is found in TYPES'2020 post-proc.).

Part |

Background on coinductive proof search and polarized logic

Coinductive approach to proof search

® Extend the Curry-Howard paradigm (of representation of proofs by
typed lambda-terms) to solutions of proof search problems:

» 3 solution is a run of the proof search process that does not fail to
apply bottom-up an inference rule, so it may be an infinite object;

Coinductive approach to proof search

® Extend the Curry-Howard paradigm (of representation of proofs by
typed lambda-terms) to solutions of proof search problems:
» 3 solution is a run of the proof search process that does not fail to
apply bottom-up an inference rule, so it may be an infinite object;
> e.g., in normal intuitionistic natural deduction /STLC, sequent
oc:=(f:ada,x:a) = a (a an atom)

has (inf. many) finite solutions, but also one infinite solution f(f(...)).

Coinductive approach to proof search

® Extend the Curry-Howard paradigm (of representation of proofs by
typed lambda-terms) to solutions of proof search problems:
» 3 solution is a run of the proof search process that does not fail to
apply bottom-up an inference rule, so it may be an infinite object;
> e.g., in normal intuitionistic natural deduction /STLC, sequent
oc:=(f:ada,x:a) = a (a an atom)
has (inf. many) finite solutions, but also one infinite solution f(f(...)).
® Develop two typed lambda-calculi:
> one by a coinductive reading of the grammar of proof terms;

» the other inductive, enriching proof terms with a formal fixed-point
operator to represent cyclic behaviour;

Coinductive approach to proof search

® Extend the Curry-Howard paradigm (of representation of proofs by
typed lambda-terms) to solutions of proof search problems:
» 3 solution is a run of the proof search process that does not fail to
apply bottom-up an inference rule, so it may be an infinite object;
> e.g., in normal intuitionistic natural deduction /STLC, sequent
oc:=(f:ada,x:a) = a (a an atom)
has (inf. many) finite solutions, but also one infinite solution f(f(...)).
® Develop two typed lambda-calculi:
> one by a coinductive reading of the grammar of proof terms;
» the other inductive, enriching proof terms with a formal fixed-point
operator to represent cyclic behaviour;
» both employing formal finite sums to represent choice points, and
entire solution spaces;

Coinductive approach to proof search

® Extend the Curry-Howard paradigm (of representation of proofs by
typed lambda-terms) to solutions of proof search problems:
» 3 solution is a run of the proof search process that does not fail to
apply bottom-up an inference rule, so it may be an infinite object;
> e.g., in normal intuitionistic natural deduction /STLC, sequent
oc:=(f:ada,x:a) = a (a an atom)
has (inf. many) finite solutions, but also one infinite solution f(f(...)).
® Develop two typed lambda-calculi:
> one by a coinductive reading of the grammar of proof terms;

» the other inductive, enriching proof terms with a formal fixed-point
operator to represent cyclic behaviour;
» both employing formal finite sums to represent choice points, and
entire solution spaces;
> e.g., the solution space of the type of Church numerals (a>a)D>aDa
gets the finitary representation
A2 XX gfpY 7 (F(Y7) 4+ x) (o as above).

Polarized intuitionistic logic

® Connectives come with a positive or negative polarity, and shifts
invert polarity, determining behavior in computation
(by normalisation or proof search).

Polarized intuitionistic logic

® Connectives come with a positive or negative polarity, and shifts
invert polarity, determining behavior in computation
(by normalisation or proof search).

® Here considered in the form of the focused sequent calculus LJP
(a slight variant of cut-free \¥ by Espirito Santo):

Polarized intuitionistic logic

® Connectives come with a positive or negative polarity, and shifts
invert polarity, determining behavior in computation
(by normalisation or proof search).

® Here considered in the form of the focused sequent calculus LJP
(a slight variant of cut-free \¥ by Espirito Santo):

Formulas:
A = N|P
(negative) N.M == a | C
(composite negative) C == PON|NAM|TP
(positive) P,Q == at|L|PVQ|LN

Polarized intuitionistic logic

® Connectives come with a positive or negative polarity, and shifts
invert polarity, determining behavior in computation
(by normalisation or proof search).

® Here considered in the form of the focused sequent calculus LJP
(a slight variant of cut-free \¥ by Espirito Santo):

Formulas:
A = N|P
(negative) N.M == a | C
(composite negative) C == PON|NAM|TP
(positive) P,Q == at|L|PVQ|LN

Auxiliary classes:
(right formulas) R == P|a~
(left formulas) L == N|a"

Polarized intuitionistic logic

® Connectives come with a positive or negative polarity, and shifts
invert polarity, determining behavior in computation
(by normalisation or proof search).

® Here considered in the form of the focused sequent calculus LJP
(a slight variant of cut-free \¥ by Espirito Santo):

Formulas:
A = N|P
(negative) N.M == a | C
(composite negative) C == PON|NAM|TP
(positive) P,Q == at|L|PVQ|LN

Auxiliary classes:
(right formulas) R == P|a~
(left formulas) L == N|a"

Contexts I': sets of declarations (x : L) (only left formulas)

Focused sequent calculus LJP (cont.)

Sequent forms:

= t: N
MNp:P=A
Ms:NFR
Me[v: P
N-e:A

(invert negative right)
(invert positive left)
(focus negative left)
(focus positive right)
(stable)

Focused sequent calculus LJP (cont.)

Sequent forms: r=t: N
Fp:P=A
Ms:NFR
Me[v: P
lFe:A

Proof search goes in rounds:

(invert negative right)
(invert positive left)
(focus negative left)
(focus positive right)
(stable)

Focused sequent calculus LJP (cont.)

Sequent forms: r=t:N (invert negative right)
MNp:P= A (invert positive left)
Ms: N FR (focus negative left)
Me[v: P (focus positive right)
lFe:A (stable)

Proof search goes in rounds:

1. these start from a stable sequent, which requires an “external
choice” (except if the RHS is composite negative, in which case
there is a jump to its inversion);

Focused sequent calculus LJP (cont.)

Sequent forms: r=t:N (invert negative right)
MNp:P= A (invert positive left)
Ms: N FR (focus negative left)
Me[v: P (focus positive right)
lFe:A (stable)

Proof search goes in rounds:

1. these start from a stable sequent, which requires an “external
choice” (except if the RHS is composite negative, in which case
there is a jump to its inversion);
2. such choices place one formula in focus with one of the rules:
Me=fv: P Mx:N[s:NFR
Ieret(v): P I x: NF coret(x,s): R (recall R :=P | a™)

Focused sequent calculus LJP (cont.)

Sequent forms: r=t:N (invert negative right)
MNp:P= A (invert positive left)
Ms: N FR (focus negative left)
Me[v: P (focus positive right)
lFe:A (stable)

Proof search goes in rounds:

1. these start from a stable sequent, which requires an “external
choice” (except if the RHS is composite negative, in which case
there is a jump to its inversion);
2. such choices place one formula in focus with one of the rules:
Me=fv: P Mx:N[s:NFR
Ieret(v): P I x: NF coret(x,s): R (recall R :=P | a™)

3. the formula in focus is then successively decomposed (by a focusing
stage, followed by an inversion stage), until stable sequents emerge
again (or axioms or “dead-ends” reached).

Coinductive proof search for LJP

® A calculus of coinductive forests, together with a co-recursive
function S(o), taking a sequent o and producing a forest
representing its entire space of solutions.

Coinductive proof search for LJP

® A calculus of coinductive forests, together with a co-recursive
function S(o), taking a sequent o and producing a forest
representing its entire space of solutions.

® A calculus of inductive forests, together with a recursive function
F (o) representing as a finitary forest the entire solution space of o.

Coinductive proof search for LJP

® A calculus of coinductive forests, together with a co-recursive
function S(o), taking a sequent o and producing a forest
representing its entire space of solutions.

® A calculus of inductive forests, together with a recursive function
F (o) representing as a finitary forest the entire solution space of o.

® Equivalence Thm.: [F(o)]=S(0).

Coinductive proof search for LJP

® A calculus of coinductive forests, together with a co-recursive
function S(o), taking a sequent o and producing a forest
representing its entire space of solutions.

® A calculus of inductive forests, together with a recursive function

F (o) representing as a finitary forest the entire solution space of o.
® Equivalence Thm.: [F(o)]=S(0).
® Coinductive predicates on coinductive forests, and equivalent

recursive predicates EF and FF on finitary forests, capturing
emptiness and finiteness of inhabitants in LJP.

Coinductive proof search for LJP

® A calculus of coinductive forests, together with a co-recursive
function S(o), taking a sequent o and producing a forest
representing its entire space of solutions.

® A calculus of inductive forests, together with a recursive function

F (o) representing as a finitary forest the entire solution space of o.
® Equivalence Thm.: [F(o)]=S(0).
® Coinductive predicates on coinductive forests, and equivalent

recursive predicates EF and FF on finitary forests, capturing
emptiness and finiteness of inhabitants in LJP.

® Decidability of emptiness and finiteness of inhabitants in LJP, by
the composition of two recursive functions:

Coinductive proof search for LJP

A calculus of coinductive forests, together with a co-recursive
function S(o), taking a sequent o and producing a forest
representing its entire space of solutions.

A calculus of inductive forests, together with a recursive function
F (o) representing as a finitary forest the entire solution space of o.

® Equivalence Thm.: [F(o)]=S(0).

® Coinductive predicates on coinductive forests, and equivalent

recursive predicates EF and FF on finitary forests, capturing
emptiness and finiteness of inhabitants in LJP.

Decidability of emptiness and finiteness of inhabitants in LJP, by
the composition of two recursive functions:

» o is inhabited in LIP iff EF(F(0));

Coinductive proof search for LJP

A calculus of coinductive forests, together with a co-recursive
function S(o), taking a sequent o and producing a forest
representing its entire space of solutions.

A calculus of inductive forests, together with a recursive function
F (o) representing as a finitary forest the entire solution space of o.

® Equivalence Thm.: [F(o)]=S(0).

® Coinductive predicates on coinductive forests, and equivalent

recursive predicates EF and FF on finitary forests, capturing
emptiness and finiteness of inhabitants in LJP.

Decidability of emptiness and finiteness of inhabitants in LJP, by
the composition of two recursive functions:

» o is inhabited in LIP iff EF(F(0));

» o has finitely many inhabitants in LJP iff FF(F(0)).

Part Il: Faithful embeddings of LJQ and LJT into polarized logic
(with application to inhabitation questions)

Intuitionistic focused sequent calculus LJQ

Cut-free fragment of LJQ (after a presentation by Dyckhoff-Lengrand):

forms of sequents: THt:A (term sequents — stable)
Me[v:A (value sequents — focus)

Intuitionistic focused sequent calculus LJQ

Cut-free fragment of LJQ (after a presentation by Dyckhoff-Lengrand):
forms of sequents: THt:A (term sequents — stable)

Me[v:A (value sequents — focus)
typing rules (implication-disjunction fragment):

Mx:ADBF[v:A Ix:ADB,y:BFt:C
Mx:ADBFx(v,yB.t): C

Intuitionistic focused sequent calculus LJQ

Cut-free fragment of LJQ (after a presentation by Dyckhoff-Lengrand):
forms of sequents: THt:A (term sequents — stable)

Me[v:A (value sequents — focus)
typing rules (implication-disjunction fragment):

Mx:ADBF[v:A Ix:ADB,y:BFt:C
Mx:ADBFx(v,yB.t): C

Mx:AAVA,y AFt:B fori=12 M=[v:A
F,X:Al\/Ag}—x(yf\l.tl,yfz.tz):B N=(vy: A

Mx:AFt:B Me[v: Al
Mx:ak[x:a] E[\xAt: AD B] M [ini(v) : Ay V A

Faithful embedding of LJQ into polarized logic

We define an embedding (_)? : LJQ — LJP, simultaneously with (_)?,
both producing positive formulas of LJP, applied to positive (resp.
negative) suformula occurrences of the LJQ formula at hand:

Faithful embedding of LJQ into polarized logic

We define an embedding (_)? : LJQ — LJP, simultaneously with (_)?,
both producing positive formulas of LJP, applied to positive (resp.
negative) suformula occurrences of the LJQ formula at hand:

a® (AD>B)
a* (ADB)

ap
aﬁ

= L(A"D>1B") (AVB)

Po— APV BP
L(A">1BF) (AVB)P =

p
p 11 (AP Vv BP)

Faithful embedding of LJQ into polarized logic

We define an embedding (_)? : LJQ — LJP, simultaneously with (_)?,
both producing positive formulas of LJP, applied to positive (resp.
negative) suformula occurrences of the LJQ formula at hand:

a’ = at (AD>B)

= (A" 51B") (AVB)Y = APVBP
P = at (ADB)

p p
P o= L(AD1B%) (AVBF = |f(APVBP)

reiv:Al [Ft:A
Soundness: M [vP: AP Mt AP

with (1)" producing left formulas of LJP: a'=at and A'=N if AP =| N.

Faithful embedding of LJQ into polarized logic

We define an embedding (_)? : LJQ — LJP, simultaneously with (_)?,
both producing positive formulas of LJP, applied to positive (resp.
negative) suformula occurrences of the LJQ formula at hand:

@ = at (ADBY = L(AF>1B) (AVB) = A°VB

P = at (ADBf = [(A">1BF) (AVB)F = |t (AFVBP)
reiv:Al [Ft:A

Soundness: M [vP: AP Mt AP

with (1)" producing left formulas of LJP: a'=at and A'=N if AP =| N.

Faithfulness (with the help of a forgetful map |_| on the image of (_)"):
I+ e: APinLJP implies e in the image of (L)’ and ['|e|: Ain LJQ.

Faithful embedding of LJQ into polarized logic

We define an embedding (_)? : LJQ — LJP, simultaneously with (_)?,
both producing positive formulas of LJP, applied to positive (resp.
negative) suformula occurrences of the LJQ formula at hand:

@ = at (ADBY = L(AF>1B) (AVB) = A°VB

P = at (ADBf = [(A">1BF) (AVB)F = |t (AFVBP)
reiv:Al [Ft:A

Soundness: M [vP: AP Mt AP

with (_)" producing left formulas of LJP: a'=a* and A'=N if AP=| N.

Faithfulness (with the help of a forgetful map |_| on the image of (_)"):
I+ e: APinLJP implies e in the image of (L)’ and ['|e|: Ain LJQ.

In fact, the forgetful map is inverse to (_)?, and gives a bijection of
inhabitants of ¢ in LIQ and of o in LJP.

Deciding inhabitation problems in LJQ and LJT

The embedding (-)? reduces inhabitation problems of LJQ to LJP.

Deciding inhabitation problems in LJQ and LJT

The embedding (-)? reduces inhabitation problems of LJQ to LJP.

Then, the tools of coinductive proof search for LIP readily obtain
decision procedures by composing recursive functions:

Deciding inhabitation problems in LJQ and LJT

The embedding (-)? reduces inhabitation problems of LJQ to LJP.

Then, the tools of coinductive proof search for LIP readily obtain
decision procedures by composing recursive functions:

For a sequent o in LJQ (implication-disjunction fragment):
® o is inhabited iff EF(F(oP));

Deciding inhabitation problems in LJQ and LJT

The embedding (-)? reduces inhabitation problems of LJQ to LJP.

Then, the tools of coinductive proof search for LIP readily obtain
decision procedures by composing recursive functions:

For a sequent o in LJQ (implication-disjunction fragment):
® o is inhabited iff EF(F(oP));
® o has finitely many inhabitants iff FF(F(o?)).

Deciding inhabitation problems in LJQ and LJT

The embedding (-)? reduces inhabitation problems of LJQ to LJP.

Then, the tools of coinductive proof search for LIP readily obtain
decision procedures by composing recursive functions:
For a sequent o in LJQ (implication-disjunction fragment):

® o is inhabited iff EF(F(oP));

® o has finitely many inhabitants iff FF(F(o?)).

For LJT, we obtain analogous decision procedures for emptiness and
finiteness of inhabitants, replacing (_)” by a negative embedding
()" : LT — LJP:

Deciding inhabitation problems in LJQ and LJT

The embedding (-)? reduces inhabitation problems of LJQ to LJP.

Then, the tools of coinductive proof search for LIP readily obtain
decision procedures by composing recursive functions:
For a sequent o in LJQ (implication-disjunction fragment):

® o is inhabited iff EF(F(oP));

® o has finitely many inhabitants iff FF(F(o?)).

For LJT, we obtain analogous decision procedures for emptiness and
finiteness of inhabitants, replacing (_)” by a negative embedding
()" : LT — LJP:

* —

a = a
(ADB) = (JA)DB” (AvB) = 1t(lA*Vv]B")
(AAB)* = A*AB* 1 = 11

Trivial unfolding of solutions

® LJT is known to face the problem of trivial unfolding of solutions of
proof search in presence of implication and disjunction.

Trivial unfolding of solutions

® LJT is known to face the problem of trivial unfolding of solutions of
proof search in presence of implication and disjunction.

For example, Scherer-Rémy give an example allowing infinitely many
focused inhabitants, but only one canonical inhabitant:
x:adD(bVc),y:akFbVvc

(x and y can be used to produce arbitrarily many copies z; : bV ¢).

Trivial unfolding of solutions

® LJT is known to face the problem of trivial unfolding of solutions of
proof search in presence of implication and disjunction.

For example, Scherer-Rémy give an example allowing infinitely many
focused inhabitants, but only one canonical inhabitant:
x:adD(bVc),y:akFbVvc

(x and y can be used to produce arbitrarily many copies z; : bV ¢).

® In LJQ trivial unfoldings may appear just with implication.
For example, infinitely many inhabitants are possible for
x:aDbyy:akFb

(x and y can be used to produce arbitrarily many copies z; : b).

Final remarks

® Ongoing work:
» trying to avoid the mentioned trivial unfoldings and have more
meaningful notions of finite solution space;
> treat conjunction in LJQ.

Final remarks

® Ongoing work:
> trying to avoid the mentioned trivial unfoldings and have more
meaningful notions of finite solution space;
> treat conjunction in LJQ.
® Related work:
» Liang-Miller provide embeddings of LJT and LJQ close to ours into
the polarized sequent calculus LJF, but only discuss provability;
» Arrial-Guerrieri-Kesner carry out a unified study of cbn and cbv
inhabitation through the Al-calculus and intersection types.

Final remarks

® Ongoing work:
> trying to avoid the mentioned trivial unfoldings and have more
meaningful notions of finite solution space;
> treat conjunction in LJQ.
® Related work:
» Liang-Miller provide embeddings of LJT and LJQ close to ours into
the polarized sequent calculus LJF, but only discuss provability;
» Arrial-Guerrieri-Kesner carry out a unified study of cbn and cbv
inhabitation through the Al-calculus and intersection types.

Bibliography:

[1] Coinductive proof search for polarized logic with applications to full
intuitionistic propositional logic, TYPES'20 post-proc, LIPlcs 188 (2021);

[2] A coinductive approach to proof search through typed lambda-calculi,
Ann. Pure Appl. Log. 172 (2021);

[3] Inhabitation in simply-typed lambda-calculus through a lambda-calculus
for proof search, Math. Struct. Comp. Sci. 29 (2019).

