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Summary

• LJT and LJQ are well-known intuitionistic focused sequent calculi,
connected with call-by-name and call-by-value computation.

• We revisit polarized logic as a unifying framework for the
simultaneous study of proof search in LJT and LJQ,
developing faithful embeddings for provability and proofs.

• Then, we can employ the tools of coinductive proof search for
polarized logic to address inhabitation questions in LJT and LJQ.

• The novelty in the talk comes from the development of the idea for
LJQ (the treatment for LJT is found in TYPES’2020 post-proc.).



Part I

Background on coinductive proof search and polarized logic



Coinductive approach to proof search

• Extend the Curry-Howard paradigm (of representation of proofs by
typed lambda-terms) to solutions of proof search problems:

I a solution is a run of the proof search process that does not fail to
apply bottom-up an inference rule, so it may be an infinite object;

I e.g., in normal intuitionistic natural deduction / STLC, sequent

σ := ( f :a ⊃ a , x :a ) ⇒ a (a an atom)

has (inf. many) finite solutions, but also one infinite solution f 〈f 〈...〉〉.

• Develop two typed lambda-calculi:
I one by a coinductive reading of the grammar of proof terms;

I the other inductive, enriching proof terms with a formal fixed-point
operator to represent cyclic behaviour;

I both employing formal finite sums to represent choice points, and
entire solution spaces;

I e.g., the solution space of the type of Church numerals (a⊃a)⊃a⊃a
gets the finitary representation

λ f a⊃a. λ xa. gfpY σ . (f 〈Y σ〉+ x) (σ as above).
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Polarized intuitionistic logic

• Connectives come with a positive or negative polarity, and shifts
invert polarity, determining behavior in computation
(by normalisation or proof search).

• Here considered in the form of the focused sequent calculus LJP
(a slight variant of cut-free λ±G by Esṕırito Santo):

Formulas:
A ::= N | P

(negative) N,M ::= a− | C
(composite negative) C ::= P ⊃ N | N ∧M | ↑ P

(positive) P,Q ::= a+ | ⊥ | P ∨ Q | ↓ N

Auxiliary classes:

(right formulas) R ::= P | a−
(left formulas) L ::= N | a+

Contexts Γ: sets of declarations (x : L) (only left formulas)
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Focused sequent calculus LJP (cont.)

Sequent forms: Γ =⇒ t : N (invert negative right)
Γ | p : P =⇒ A (invert positive left)
Γ[s : N] ` R (focus negative left)
Γ ` [v : P] (focus positive right)
Γ ` e : A (stable)

Proof search goes in rounds:

1. these start from a stable sequent, which requires an “external
choice” (except if the RHS is composite negative, in which case
there is a jump to its inversion);

2. such choices place one formula in focus with one of the rules:

Γ ` [v : P]

Γ ` ret(v) : P

Γ, x : N [s : N] ` R

Γ, x : N ` coret(x , s) : R (recall R ::= P | a−)

3. the formula in focus is then successively decomposed (by a focusing
stage, followed by an inversion stage), until stable sequents emerge
again (or axioms or “dead-ends” reached).
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Coinductive proof search for LJP

• A calculus of coinductive forests, together with a co-recursive
function S(σ), taking a sequent σ and producing a forest
representing its entire space of solutions.

• A calculus of inductive forests, together with a recursive function
F(σ) representing as a finitary forest the entire solution space of σ.

• Equivalence Thm.: [[F(σ)]]=S(σ).

• Coinductive predicates on coinductive forests, and equivalent
recursive predicates EF and FF on finitary forests, capturing
emptiness and finiteness of inhabitants in LJP.

• Decidability of emptiness and finiteness of inhabitants in LJP, by
the composition of two recursive functions:

I σ is inhabited in LJP iff EF(F(σ));

I σ has finitely many inhabitants in LJP iff FF(F(σ)).
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Part II: Faithful embeddings of LJQ and LJT into polarized logic
(with application to inhabitation questions)



Intuitionistic focused sequent calculus LJQ

Cut-free fragment of LJQ (after a presentation by Dyckhoff-Lengrand):

forms of sequents: Γ ` t : A (term sequents – stable)
Γ ` [v : A] (value sequents – focus)

typing rules (implication-disjunction fragment):

Γ, x : A⊃ B ` [v : A] Γ, x : A⊃ B, y : B ` t : C

Γ, x : A⊃ B ` x(v , yB .t) : C

Γ, x : A1 ∨ A2, yi : Ai ` ti : B for i = 1, 2

Γ, x : A1 ∨ A2 ` x(yA1
1 .t1, y

A2
2 .t2) : B

Γ ` [v : A]

Γ ` 〈v〉 : A

Γ, x : a ` [x : a]

Γ, x : A ` t : B

Γ ` [λxA.t : A⊃ B]

Γ ` [v : Ai ]

Γ ` [ini (v) : A1 ∨ A2]
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Faithful embedding of LJQ into polarized logic

We define an embedding ( )p : LJQ −→ LJP, simultaneously with ( )p̄,
both producing positive formulas of LJP, applied to positive (resp.
negative) suformula occurrences of the LJQ formula at hand:

ap = a+ (A ⊃ B)p = ↓ (Ap̄ ⊃↑ Bp) (A ∨ B)p = Ap ∨ Bp

ap̄ = a+ (A ⊃ B)p̄ = ↓ (Ap ⊃↑ B p̄) (A ∨ B)p̄ = ↓↑ (Ap̄ ∨ B p̄)

Soundness:

Γ ` [v : A]

Γl ` [vp : Ap]

Γ ` t : A

Γl ` tp : Ap

with ( )l producing left formulas of LJP: al =a+ and Al =N if Ap̄ =↓ N.

Faithfulness (with the help of a forgetful map | | on the image of ( )p):
Γl ` e : Ap inLJP implies e in the image of ( )p and Γ`|e| :A inLJQ.

In fact, the forgetful map is inverse to ( )p, and gives a bijection of
inhabitants of σ in LJQ and of σp inLJP.
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Γ ` [v : A]

Γl ` [vp : Ap]

Γ ` t : A

Γl ` tp : Ap

with ( )l producing left formulas of LJP: al =a+ and Al =N if Ap̄ =↓ N.

Faithfulness (with the help of a forgetful map | | on the image of ( )p):
Γl ` e : Ap inLJP implies e in the image of ( )p and Γ`|e| :A inLJQ.

In fact, the forgetful map is inverse to ( )p, and gives a bijection of
inhabitants of σ in LJQ and of σp inLJP.



Deciding inhabitation problems in LJQ and LJT

The embedding ( )p reduces inhabitation problems of LJQ to LJP.

Then, the tools of coinductive proof search for LJP readily obtain
decision procedures by composing recursive functions:

For a sequent σ in LJQ (implication-disjunction fragment):

• σ is inhabited iff EF(F(σp));

• σ has finitely many inhabitants iff FF(F(σp)).

For LJT, we obtain analogous decision procedures for emptiness and
finiteness of inhabitants, replacing ( )p by a negative embedding
( )∗ : LJT −→ LJP:

a∗ = a−

(A ⊃ B)∗ = (↓A∗) ⊃ B∗ (A ∨ B)∗ = ↑(↓A∗ ∨ ↓B∗)
(A ∧ B)∗ = A∗ ∧ B∗ ⊥∗ = ↑ ⊥
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Trivial unfolding of solutions

• LJT is known to face the problem of trivial unfolding of solutions of
proof search in presence of implication and disjunction.

For example, Scherer-Rémy give an example allowing infinitely many
focused inhabitants, but only one canonical inhabitant:

x : a ⊃ (b ∨ c), y : a ` b ∨ c

(x and y can be used to produce arbitrarily many copies zi : b ∨ c).

• In LJQ trivial unfoldings may appear just with implication.

For example, infinitely many inhabitants are possible for

x : a ⊃ b, y : a ` b

(x and y can be used to produce arbitrarily many copies zi : b).
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Final remarks

• Ongoing work:
I trying to avoid the mentioned trivial unfoldings and have more

meaningful notions of finite solution space;
I treat conjunction in LJQ.

• Related work:
I Liang-Miller provide embeddings of LJT and LJQ close to ours into

the polarized sequent calculus LJF, but only discuss provability;
I Arrial-Guerrieri-Kesner carry out a unified study of cbn and cbv

inhabitation through the λ!-calculus and intersection types.
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